

# Mahatma Gandhi University Kottayam

| Programme             | BSc (Honours) Electronics with Computer Technology                                |            |              |               |            |               |
|-----------------------|-----------------------------------------------------------------------------------|------------|--------------|---------------|------------|---------------|
| Course Name           | AI and Machine Learning Fundamentals                                              |            |              |               |            |               |
| Type of Course        | DSE                                                                               |            |              |               |            |               |
| Course Code           | MG3DSEECT203                                                                      |            |              |               |            |               |
| Course Level          | 200-299                                                                           |            |              |               |            |               |
| <b>Course Summary</b> | This course equips learners with the essential understanding and practical skills |            |              |               |            |               |
| & Justification       | to apply AI and N problems                                                        | Machine Le | arning in so | olving varied | electronic | e engineering |
| Semester              | 3/                                                                                | Credits    |              |               | 4          | Total         |
| Course Details        | Learning<br>Approach                                                              | Lecture    | Tutorial     | Practical     | Others     | Hours         |
|                       |                                                                                   | 4          |              | $\mathcal{D}$ |            | 60            |
| Pre-requisites        |                                                                                   |            |              | 9             |            |               |

## COURSE OUTCOMES (CO)

| CO No: | Expected Course Outcome                                                   | Learning Domains * | PO No: |
|--------|---------------------------------------------------------------------------|--------------------|--------|
| 1      | Explain the concepts of Artificial Intelligence (AI) and Machine Learning | U                  | 1,2    |
| 2      | Apply Python for machine learning applications                            | A                  | 1,2    |
| 3      | Develop a solid understanding of supervised and unsupervised Learning     | A                  | 1,2,10 |
| 4      | Understand the principles of neural networks                              | U                  | 1,2,10 |

<sup>\*</sup>Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

## **COURSE CONTENT**

## **Content for Classroom transaction (Units)**

| Module | Units | Course description                                                                                                        | Hours | CO No. |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------|-------|--------|
|        | 1     | Introduction                                                                                                              | 8     |        |
|        | 1.1   | Introduction to AI, Concept of Intelligent agents                                                                         | 2     | 1      |
|        | 1.2   | Introduction to Machine Learning.                                                                                         | 2     | 1      |
| l      | 1.3   | Difference between AI, Machine Learning (ML), and Deep Learning.                                                          | 2     | 1      |
|        | 1.4   | Real-world Applications of ML:Healthcare (disease prediction, genetics), Business (sales forecasting, customer behavior). | 2     | 1      |

|            | 2   | Machine Learning Tools                                                                                   | 20 |   |
|------------|-----|----------------------------------------------------------------------------------------------------------|----|---|
|            | 2.1 | Introduction to Python for Data Science and ML                                                           | 5  | 2 |
| 2 2.2 Usin |     | Using Libraries: NumPy (numerical computing)                                                             |    |   |
|            |     | Pandas (data manipulation)                                                                               | 5  | 2 |
|            |     | Matplotlib / Seaborn (data visualization)                                                                |    |   |
|            | 2.3 | Setting up ML environments using: JupyterNotebook, PyCharm                                               | 5  | 2 |
|            |     | Importing and Exporting Data (CSV, Excel)                                                                |    |   |
|            | 2.4 | Introduction to Data pre-processing, Feature Engineering, Data Cleaning, Exploratory Data Analysis (EDA) | 5  | 2 |
|            | 3   | Machine Learning Techniques                                                                              | 17 |   |
|            | 3.1 | Types of Machine Learning: supervised, unsupervised, reinforcement.                                      | 4  | 3 |
| 3          | 3.2 | Supervised learning Techniques: Basic concepts of K-Nearest Neighbors (KNN), Linear regression.          | 5  | 3 |
|            | 3.3 | Unsupervised learning Techniques: Basic concepts of K-Means Clustering, Hierarchical Clustering.         | 4  | 3 |
|            | 3.4 | Reinforcement learning                                                                                   | 4  | 3 |
|            | 4   | Concepts of Neural Networks and Model Training                                                           | 15 |   |
|            | 4.1 | Basic concepts of Neural Network. Biological vs. Artificial Neurons, Perceptron, Sigmoid                 | 2  | 4 |
| 4          | 4.2 | Structure of Feed-forward Neural Network, parameters: weights, biases, Concept of Forward Propagation    | 5  | 4 |
|            | 4.3 | Gradient Descent Algorithm, Concept of Learning Rate and Cost Function (quadratic cost function)         | 4  | 4 |
|            | 4.4 | Introduction to Back-propagation                                                                         | 4  | 4 |
| 5          |     | Teacher specific content                                                                                 |    |   |

| Teaching and            | Classroom Procedure (Mode of transaction)                                      |  |  |  |
|-------------------------|--------------------------------------------------------------------------------|--|--|--|
|                         | Leverage a blended learning approach with a mix of lectures, interactive       |  |  |  |
| Learning Approach       | discussions, and hands-on lab sessions                                         |  |  |  |
|                         | MODE OF ASSESSMENT                                                             |  |  |  |
|                         | A. Continuous Comprehensive Assessment (CCA)(Internal)                         |  |  |  |
|                         | Theory: - 30 Marks                                                             |  |  |  |
| <b>Assessment Types</b> | Internal Tests, Seminar Presentation, Case Studies/Projects/Site visit/ others |  |  |  |

#### **B. Semester End Examination**

- 1. Written Test (70 marks) 2 Hour (Duration of Examination)
- a. MCQ 20 Marks
- b. Short answer questions (6 out of 8 questions) 6x5=30 marks
- c. Essay questions (2 out of 4) 2x10=20 marks

#### References

- 1. Auelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Second Edition, O'Reilly, 2019
- 2. Jeremy Watt, Reza Borhani, Aggelos Katsaggelos, Machine Learning Rened, 2nd Ed., Cambridge University Press.

#### **Suggested Readings**

- 1. Ethem Alpaydin, Introduction to Machine Learning, 3rd Ed., MIT Press.
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.
- 3. Michael Nielsen, Neural Networks and Deep Learning
- 4. Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MI



**MGU-UGP (HONOURS)** 

Syllabus